On the non-existence of Steiner (v, k, 2) trades with certain volumes

نویسندگان

  • Abdollah Khodkar
  • Dean G. Hoffman
چکیده

In this note, we prove that there does not exist a Steiner (v, k, 2) trade of volume m, where m is odd, 2k + 3 ~ m ~ 3k 4, and k ~ 7. This completes the spectrum problem for Steiner (v, k, 2) trades.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

متن کامل

On the existence of (v, k, t) trades

A (v, k, t) trade can be used to construct new designs with various support sizes from a given t-design. H.L. Hwang (1986) showed the existence of (v, k, t) trades of volume 2t and the non-existence of trades of volumes less than 2t or of volume 2t + 1. In thIs paper, first we show that there exist (v, k, t) trades of volumes 2t + 2t1 (t ~ 1), 2t + 2t1 + 2t 2 (t ~ 2), 2t + 2t 1 + 2t 2 + 2t 3 (t...

متن کامل

On the spectrum of simple (v, 3, 2) trades

In this paper, we determine the spectrum (the set of all possible volumes) of simple (v, 3, 2) trades for any fixed foundation size v 6≡ 5 (mod 6). Index Words: trades, spectrum, Steiner triple systems, large sets of Steiner triple systems MR Subject Classification: 05B07, 05B05

متن کامل

On 2-(v, 3) trades of minimum volume

In this paper, Steiner and non-Steiner 2-(v, 3) trades of minimum volume are considered. It is shown that these trades are composed of a union of some Pasch configurations and possibly some 2-(v, 3) trades with 6 ≤ v ≤ 10. We determine the number of non-isomorphic Steiner 2-(v, 3) trades of minimum volume. As for non-Steiner trades the same thing is done for all vs, except for v ≡ 5 (mod 6).

متن کامل

The Steiner diameter of a graph

‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1998